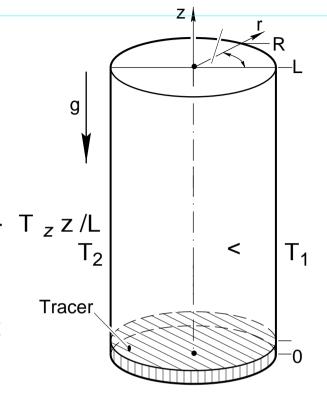
Simulation Model

Vertical cylinder L = 30 mm, 2R = 1 or 3 mm


Thermal boundary conditions

horizontal T = $T_1 - T_2$ vertical T_z wall

T (R, , z) =
$$(T_1 + T_2)/2 +$$

 $(T_1 - T_2) (\cos)/2 + T_z z/L$

bottom

$$T(r, , 0) = (T_1 + T_2)/2 + (T_1 - T_2) r (cos)/2R$$

Initial condition

$$c(z, 0) = c_0, 0 z$$
, and $c(z, 0) = 0, z L$, where $L << 1$

Transport equations

div
$$\mathbf{u} = 0$$
,
 \mathbf{u} grad $\mathbf{u} = \frac{1}{2} p + \mathbf{u} - (T - T_2)g\mathbf{k}$,
 \mathbf{u} grad $T = T$.

$$\frac{c}{t} + u$$
 grad $c = D$ c

3D-time-dependent solutions based on properties of In at 1000 K

Alexander, Ramus and Rosenberger, Microgravity Sci. Technology 9 (1996) 158